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Abstract—We introduce a convolutional neural network model
for unsupervised learning of depth and ego-motion from cylin-
drical panoramic video. Panoramic depth estimation is an im-
portant technology for applications such as virtual reality, 3d
modeling, and autonomous robotic navigation. In contrast to pre-
vious approaches for applying convolutional neural networks to
panoramic imagery, we use the cylindrical panoramic projection
which allows for the use of the traditional CNN layers such as
convolutional filters and max pooling without modification. Our
evaluation of synthetic and real data shows that unsupervised
learning of depth and ego-motion on cylindrical panoramic im-
ages can produce high-quality depth maps and that an increased
field-of-view improves ego-motion estimation accuracy. We also
introduce Headcam, a novel dataset of panoramic video collected
from a helmet-mounted camera while biking in an urban setting.

Keywords-computer vision, structure-from-motion, unsuper-
vised learning, panoramic video

I. INTRODUCTION

Understanding the structure of a 3D scene is an important
problem in many fields, from autonomous vehicle navigation
to free-viewpoint rendering of virtual reality (VR) content. The
ability to automatically infer scene depth in panoramic video
would be especially useful for free-viewpoint rendering in a
VR headset [1], for example.

Given a color image, the scene depth is unknown and must
either be inferred from single-view or multi-view cues or
acquired with a different sensor. Single-image inference is
especially interesting since most consumer content is captured
from a single viewpoint without special hardware for depth
estimation such as time-of-flight ranging or structured light
sensors. Unfortunately, predicting 3D structure from a single
image is extremely challenging. The number of confounding
factors (e.g. varied texture, lighting, occlusions, and object
movement) makes it an ill-posed problem: a single image
could represent many possible 3D scenes.

Early attempts at estimating scene structure from motion
(also known as SfM) focused on directly analyzing factors
such as the geometry and flow of the image [2]–[4]. However,
these models were often fragile in the face of occlusions, ob-
ject motion, and other inconsistent, but real-world, conditions.
In the past several years, many exciting advances have been
made in estimating scene structure and ego-motion—motion
of the observer—using deep neural networks.

Fig. 1: An example of predicting depth (bottom) from a single
panoramic input (top) using our proposed method. The depth
is color-coded so that brighter pixels are closer.

Early research relied on labeled data for training [5], [6].
Unfortunately, labeled 3D footage is expensive to create,
limiting the quantity and diversity of available training data.
This limitation has triggered a promising new area of research:
unsupervised SfM models, which figure out scene attributes
such as depth and ego-motion without requiring labeled data.
In the past few years, several unsupervised models have
been proposed with comparable performance to the supervised
state-of-the-art [7]–[11], lowering the cost and expanding the
diversity of potential training datasets.

A. Panoramic Projection Models

While much progress has been made for pinhole perspective
images, researchers have only recently started to apply these
deep networks to panoramic input. There are many compelling
applications for computer vision with non-pinhole projection
images, such as robotic vision with omnidirectional cameras.

To process panoramic imagery in a convolutional neural
network (CNN), we need to choose a panoramic projection
model that maps spherical coordinates to image coordinates.
The three most common options are spherical or equirectangu-
lar projection, cube map projection, and cylindrical projection.

Spherical projection has the advantage of representing the
entire sphere in a rectangular image. The disadvantage is the
distortions at the poles caused by the projection (see Figure
2). Because of these distortions, properly processing spherical



panoramic input in a CNN requiring expensive modifications
to the model layers [12], [13].

Cube map projection also represents the entire sphere
and avoids distortions at the poles; however, it introduces
discontinuities between the faces of the cube. To use cube
maps as input to CNNs, we need to run the model on each
face separately and use a careful padding strategy and loss
functions to encourage agreement between the six outputs [14],
[15].

Cylindrical projection has been relatively less explored for
CNN input. Unlike the other projection models, cylindrical
projection is continuous and avoids increasing distortion to-
ward the poles (Figure 2). The trade-off is that the cylinder
cannot represent the entire sphere; the top and bottom are cut
off. Despite that small disadvantage, we argue that cylindrical
panoramas are ideal for use in CNNs they allow for standard
convolutional layers and only require a simple horizontal wrap
padding. Furthermore, in most applications, the top and bottom
areas are relatively unimportant (usually consisting of sky or
ceiling at the top and ground, vehicle, or camera mount at the
bottom).

Despite the advantages of cylindrical projection, to our
knowledge, deep networks for depth prediction have not yet
been applied to cylindrical panoramic imagery. In this paper,
we address this gap by proposing and evaluating a novel
unsupervised learning approach that estimates depth and ego-
motion from cylindrical panoramas. We achieve this by mod-
ifying the architecture of Zhou et al. [8], with improvements
from later papers, to use cylindrical panoramic projection.

This work has three major contributions:
1) We present CylindricalSfMLearner, an unsupervised

model for estimating structure from motion given cylin-
drical panoramic input.

2) We evaluate our method on synthetic and real data to
validate our approach.

3) We provide a new dataset of panoramic street-level
videos suitable for unsupervised learning of depth and
ego-motion.

II. RELATED WORK AND BACKGROUND

A. Supervised Monocular Depth Prediction

Early research focused on detecting structure from stereo—
or multi-source—imagery. Stereo SfM is much more con-
strained than detecting structure from monocular—single-
source—input, but the stereo input requirement limits the
model’s flexibility. Eigen [5] proposed a different approach us-
ing deep neural networks. They presented a supervised model
for estimating depth maps from monocular input images. Their
model was composed of two stacks—one for coarse estimation
and one for fine estimation—and joined the two predictions.

B. Supervised to Unsupervised Models

While supervised models for single-image depth prediction
demonstrate excellent performance, collecting labeled footage
is very expensive, increasing training cost and limiting the size

Fig. 2: Comparison of convolutional filtering using equirect-
angular projection (left), cylindrical projection (middle), and
cube map projection (right). A square filter on the equirectan-
gular projection (bottom left) maps to differently sized areas
on the sphere (top left) [12]. In contrast, a square filter on
the cylindrical projection (bottom middle) always projects to
the same area on the cylinder (top middle). This property of
cylindrical panoramas allows us to apply convolutional neural
network layers to a cylindrical panorama without needing
to model position-dependent effects on the receptive field,
as in previous works [16]–[18]. Cube map projection (right)
introduces seams and discontinuities, necessitating the use
of multi-image inference and careful padding strategies [14],
[15].

and diversity of datasets. This limitation triggered some re-
searchers to turn towards unsupervised models. Godard et al.,
taking inspiration from previous stereo techniques, proposed
a model that was trained on unlabeled stereo footage. Their
trained model outperformed the previous supervised state-of-
the-art on urban scenes and performed reasonably well on
unrelated datasets [7].

Zhou et al. removed the constraint of needing stereo training
footage [8]. They proposed an unsupervised model composed
of jointly-trained depth and pose CNNs using a loss function
tied to novel view synthesis. They found that their unsuper-
vised model performed comparably to supervised models on
the known datasets and reasonably well when tested against a
completely unknown data set. Unfortunately, while the model
could be trained on monocular footage, it assumes a given
camera calibration, which prevents arbitrary footage from the
web from being used as training data.

In a concurrent study, Vijayanarasimhan et al. addressed
this shortcoming by explicitly modeling scene geometry [9].
Inspired by geometrically-constrained Simultaneous Local-
ization and Mapping (SLAM) models and Godard’s work
on left-right consistency, they proposed a model capable of
detecting both ego-motion and object motion—as well as
depth and object segmentation—from uncalibrated monocular
images. Building upon those previous works, Mahjourian et
al. proposed a completely unsupervised model with explicit
geometric scene modeling [10]. Their model introduced a new
3D loss function and added a new principled mask for handling
unexplainable input.



(a) The depth network consists of a seven-layer encoder followed by a seven-layer decoder with a
skip-layer architecture. The network returns the multi-scale disparity predictions, which can then
be converted to depth predictions.

(b) The pose network consists of
a �ve-layer encoder followed by
two pose layers and returns the
pose as a six-element vector. The
explainability network adds a �ve-
layer decoder and returns the multi-
scale explainability mask.

Fig. 3: The SfMLearner model [8] consists of two jointly-trained CNN stacks. The left diagram shows the depth CNN, and
the right diagram shows the pose/explainability CNN.

C. Beyond Pinhole Projection

All of the models previously discussed take pinhole images
as input. However, pinhole images have a serious disad-
vantage: objects can move out of the �eld of view. Many
applications, such as robotic navigation or virtual reality,
bene�t from the 360� �eld of view. Previous research tackled
this omnidirectional SfM problem using direct methods with
some success [19], but comparatively little research has been
done with 360� imagery and CNNs.

Spherical input is particularly challenging for CNNs be-
cause spheres cannot be perfectly represented by a rectangu-
lar grid. In equirectangular projection, a common spherical
projection method, this results in signi�cant distortion in the
polar regions of the image that propagate error through the
convolutional layers. The traditional solution to this has been
to use additional parameters and data augmentation to correct
the distortions [20], but recently, researchers have presented
several CNNs designed for direct spherical input. Several of
these approaches aim for full rotational invariance by using
signal processing techniques to model spherical convolutional
layers [12], [13], [21]. While this approach is effective, it is
also expensive; these models are severely limited in their input
data size, making them impractical for most problems.

As full rotational invariance is often not required, several
researchers have suggested a lighter-weight alternative: replac-
ing normal convolutional �lters with distortion-aware �lters
[16]–[18]. In this approach, the standard rectangular CNN
�lter is replaced by a �lter that samples points based on
the image distortion, correcting the polar distortion effects.

These models can be trained with one projection model and
tested with another, allowing them to utilize the large body of
pinhole datasets. There were several other approaches aside
from full rotational invariance and distortion-aware �lters,
including graph CNNs [22], style transfer [23], and increased
�lter sizes in the polar regions [24].

To avoid the distortions in the equirectangular projection,
Cheng et al. [14] and Wang et al. [11] use cube maps as input
to CNNs for saliency prediction and unsupervised depth and
ego-motion. They run a network on each cube face separately
and use padding and specialized loss functions to encourage
coherence between the outputs.

Cylindrical projection is another way of achieving 360�

views around a given axis. Unlike spherical panoramas, cylin-
drical panoramas do not capture the full 3D space. However,
they have a major bene�t: they can be mapped exactly to
a single plane, removing the issues of polar distortion and
discontinuities. Despite this bene�t, little research has been
done using deep networks with the cylindrical projection
model [25], [26]. Furthermore, while some spherical CNN
networks have made simpli�cations, including cropping of
the polar regions [16] and distortion-aware �lters [16], to
the best of our knowledge, no previous work has applied a
cylindrical CNN to the structure-from-motion problem. Our
work introduces the �rst CNN model designed to predict depth
and pose from cylindrical panoramic input.

III. M ETHODS

In this work, we present an unsupervised convolutional
model that jointly estimates the depth map from a single



cylindrical panoramic image and ego-motion from a short
image sequence.

A. Model Architecture

Our architecture is based on that of Zhou et. al [8], an
unsupervised model designed to predict depth and ego-motion
in monocular pinhole images. The architecture, illustrated in
Figure 3, is a convolutional network consisting of two jointly-
trained stacks: (a) a depth network to estimate the depth map,
(b) a pose network/explainability mask to estimate the change
in the pose in image sequences and handle unexplainable
input. The depth network follows the DispNet [27] skip-
layer architecture, with seven contracting layers and seven
expanding layers, outputting a multi-scale depth prediction.
The pose network (PoseExpNet) consists of �ve contracting
convolutional layers and three pose layers, outputting the
predicted translation and rotation between the source and
target views. The explainability network consists of a �nal �ve
upconvolution layers and returns a multi-scale explainability
mask, which masks “unexplainable” motion.

Fig. 4: We use panoramic view synthesis as a supervisor:
the source panorama, depth, and pose transformation are used
to synthesize a target view, and the loss is computed as the
difference between the actual and synthesized views. As the
synthesized view improves, the depth and pose predictions
improve.

The learner usesview synthesis—the prediction of a tar-
get frame given source frames—as a self-supervisory signal
(Figure 4). The network takes one target frame and several
neighboring source frames as input. At each training step, the
joint DispNet and PoseExpNet stacks predict (a) the depth of
the target frame and (b) the pose of each source frame in the
target frame's coordinate system. These predictions are then
applied to the source images to synthesize the target image
throughprojective inverse warping.

Let D be the predicted depth map for the target image. The
corresponding 3D pointX i;j

target for pixel i; j in the target image

is found by unprojection according to the predicted depth value
at D i;j .

X i;j
target = unproject(i; j; D i;j ) (1)

This 3D point is then transformed into the source image's
coordinate frame according toPsource the predicted pose of
the source image.

X i;j
source= transform(Psource; X i;j

target) (2)

Finally, the source image is sampled using bilinear interpola-
tion at the projection ofX i;j

source.

I i;j
proj = sample(I source; project(X i;j

source)) (3)

The learner then tries to minimize the photometric error
between theI target andI proj, the source image warped into the
target image's coordinate frame. See Figure 6 for an illustra-
tion. The learner reduces the photometric error by improving
the depth and pose predictions [8], allowing the network to
learn scene structure from monocular images without labeled
depth maps.

For this model, we use a three-part objective function.
The main component is thephotometric loss(L pixel), which
minimizes the difference between synthesized views and the
target view. This is regularized by thesmooth loss(L smooth),
which minimizes the second derivatives with respect to the
depth and the optionalexplainability loss(L exp), which makes
the model more resilient to anomalous input (e.g. moving
objects). If� s and� e represent the smooth and explainability
weights, the total loss can be written as follows:

L =
X

scales

 
X

sources

L pixel + � sL smooth+
X

sources

� eL exp

!

(4)

If I is an RGB image,D is the depth prediction, andE is
the explainability mask, the three loss components at pixeli; j
at each scale can be written as follows:

L i;j
pixel =
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L i;j
exp =

X
softmax
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Ei;j �

(7)

We also experimented with the image-aware depth smooth-
ness loss term introduced by Wang et al. [11]:

L i;j
smooth= e�r 2 I i;j

(j
@D i;j

@x2
j + j

@D i;j

@x@y
j + j

@D i;j

@y2
j) (8)

The advantage of this smoothing term is that it reduces the
depth smoothing effect at image edges.

Two major modi�cations were required to allow for cylin-
drical input: 1) the view synthesis functions were modi�ed
to account for cylindrical projection, and 2) the convolutional
layers, resampling functions, and loss were modi�ed to pre-
serve horizontal wrapping.



Fig. 5: Pinhole projection model. The 3D world (on the world
coordinate system) is projected on a �at image plane; the
image plane is a focal lengthf away from the projective center
along theZs axis (on the sensor coordinate system). The result
is a W � H rectangular image.

1) Camera Projection and Cylindrical Panoramas:The
view synthesis function introduced by Zhou et al. [8] works by
warping the source images onto the target image's coordinate
frame using the predicted target inverse depth map and the
source image relative pose. To adapt this process to work with
cylindrical input, we modi�ed the mapping functions between
the pixel, camera, and world coordinate frames.

Most structure-from-motion systems expectpinhole projec-
tion images as input. Pinhole projection images project a 3D
scene from the world coordinate system onto a �at image
plane; this process can be described by the focal lengthf ,
principle pointc, and the image heightH and widthW , as
shown in Figure 5.

In contrast,cylindrical projection projects the 3D world
onto a curved cylindrical surface, as seen in Figure 6. The
goal of this process is to take a 3D point in the world
coordinate system and project it onto a rectangular cylindrical
panorama. This requires projecting the 3D point onto the
cylindrical image surface and converting the image surface
into a Cartesian coordinate system.

The transformation between the sensor and pixel coordinate
systems can be described by the following equations. A 3D
point P = ( xs; ys; zs) in the sensor coordinate system projects
to a 2D pointQ = ( �; h ) on the unit cylinder around the origin
according to the following formula:

�
�
h

�
=

2

4
arctan

�
x s
zs

�

ysp
x 2

s + z2
s

3

5 (9)

The inverse projection from the unit cylinder to a 3D point
in the sensor coordinate system is as follows:

2

4
xs

ys

zs

3

5 =

2

4
dsin �

dh
dcos�

3

5 (10)

whered is the depth of the point.

Fig. 6: Cylindrical projection model. In contrast with pinhole
projection, this projects an image onto a curved cylindrical
surface. The �nal result is a rectangular image with heightH
and a width representing the full360� .

For our experiments, we modi�ed the Tensor�ow implemen-
tation of SfMLearner by Zhou et al. [8] to use these cylindrical
un-projection and projection functions.

2) Horizontal Wrapping:In order to extend the model for
cylindrical panoramic images, we modi�ed the convolutional
layers, smooth loss function, and 2D projection to account for
horizontal wrapping.

Unlike pinhole images, cylindrical images wrap horizon-
tally. For a convolutional layer to work with cylindrical input,
it must preserve this horizontal wrapping property, rather than
using zero-padding as is typical. Horizontal wrapping can be
done by padding the right side of the tensor with columns
from the left and vice-versa, as depicted in Figure 7.

We added wrap padding to all convolutions in the network
architecture. We also added wrap padding to the smooth
gradient loss computation and the bilinear sampler used for
view synthesis.

Fig. 7: An example of a horizontally wrapping convolutional
layer. The wrapping is achieved by copying the left-most
columns to the right side and vice-versa.




